

铷 Rb 原子拉曼应用 电光相位调制器(PM) 谐振频率 3.417GHz

总监

电光相位调制器(PM)是通过向电光材料施加电场来改变光信号相位的装置。PM 可以在从紫外(UV)到 红外(LWIR)的宽光谱范围内工作,具有低光学损耗、高光功率和从 50kHz 到 20GHz 的调制频率。

相位调制器可以在低驱动电压下实现高调制深度,使其对各种应用具有吸引力,包括激光冷却、光谱和光 谱增宽。我公司提供体积/自由空间 PM (bulk/free-space)、光纤耦合 fiber-coupled (PM.FC)和 surface-mount (PM.SMD) devices 表面安装相位调制器。

我们的自由空间相位调制器(PM)具有大的频率范围(50kHz-20GHz)、宽的光谱带宽(UV-IR)、高的 光学损伤阈值(ODT)和非常低的光学插入损耗(IL)。

对于系统集成是优先事项并且可以在 ODT 和 LL 方面做出牺牲的应用, 我们为选择性范围的自由空间相位调 制器提供了非常稳健和长期稳定的光纤耦合。

产品特点

专为操纵中性 Rb 铷原子, Yb 镱原子, Cs 铯原子而定制 优化的调制效率 高光功率处理能力 低插入损耗

经过广泛测试和长期验证

包括精确的频率调整

光纤连接: 单模 PM, FC-APC, 30cm

产品应用

激光冷却/再泵机生成 量子态操纵(拉曼跃迁,...) 光谱学 PM.FC-Cs 还可用于光学时钟

通用参数

一, 铯 Cs, 铷 Rb,镱 Yb 原子捕获和冷却 Atom trapping & cooling (ATC)

用于铷 Rb 原子的捕获和冷却

型号	PM.FC-Rb78 0_2.9	PM.FC-Rb780 _3.0	PM.FC-Rb780 _3.4	PM.FC-Rb780 _6.6	PM.FC-Rb780 _6.8
谐振频率(GHz)	2.915	3.035	3.417	6.58	6.835
应用	激光冷却	拉曼	拉曼	激光冷却	拉曼
调谐范围 Δf(MHz)	+/- 50	+/- 50	+/- 50	+/- 50	+/- 50
波长λo(nm)	780/795	780/795	780	780	780
插入损耗-IL(dB %)	~2dB 20%	~2dB 20%	~2dB 20%	~2dB 20%	~2dB 20%
Max. 光功率(W)@ λο	~1	~]	~1	~1	~]
典型调制深度βo(rad)	0.6	1.0	1.0	1.0	1.0
所需射频@{fo,λo,β o}(dBm)	~25	~30	~30	~25	30
匹配射频驱动器	QD-Rb_2.9	QD-Rb_3.0	QD-Rb_3.4	QD-Rb_6.6	QD-Rb_6.8

用于镱 Yb 原子的捕获和冷却

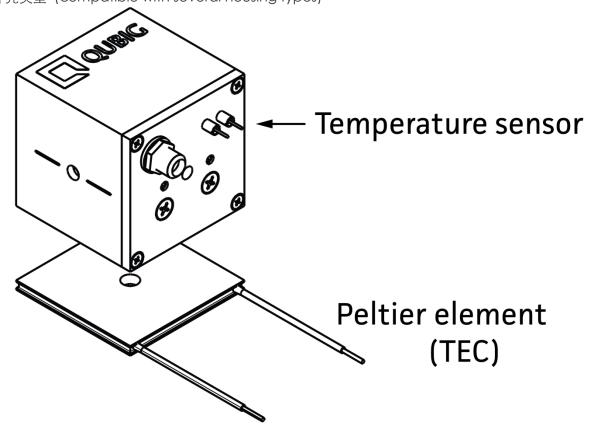
型号	PM.FC-Yb_3.8	PM.FC-Yb_6.3
谐振频率 fo(MHz)	3805	6330
调谐范围Δf(MHz)	± 50	±50
波长λo (nm)	556	556
插入损耗-IL (dB %)	~ 2.5dB 30%	~ 2.5dB 30%

Max. 光功率 (W) @ λο	~0.5	~0.5
典型调制深度βo (rad)	1.8	1.0
所需 RF@ {fo, λo, βo} (dBm)	~30	~28
匹配射频驱动器	QDG	QDG

用于铯 Cs 原子的捕获和冷却

型号	PM.FC-Cs_4.6	PM.FC-Cs_9.2
谐振频率 fo(GHz)	4.613	9.192
应用	激光冷却	拉曼
调谐范围Δf(MHz)	±70	±70
波长λo (nm)	852	852
插入损耗-IL (dB %)	~ 2dB 20%	~ 2dB 20%
Max. 光功率 (W) @ λο	~1	~]
典型调制深度βo (rad)	1.0	1.0
所需 RF@ {fo, λo, βo} (dBm)	~33	~33
匹配射频驱动器	QD-Cs_4.6	QD-Cs_9.2

二, Mg+离子 Ca+离子和 Yb+离子捕获和冷却 Ion trapping & cooling (ITC)


三,BaF,SrF,YbF,YO, NaK,BaH分子捕获和冷却 Molecule trapping & cooling (MTC)

您的选项:

T-控制: +TC (T-control: +TC)

允许 T-ctrl.和稳定 EOM (allows T-ctrl. & stabilisation of EOMs) 用于大功率型号的主动冷却 (for active cooling of high power models) 包括 T 型传感器 (PT1000 或 NTC10k), TEC (incl. T-sensor (PT1000 or NTC10k), TEC) 需要单独的温度控制器 (requires separate Temp.-controller) 兼容多种外壳类型 (compatible with several housing types)

